Functional CB1 receptors are broadly expressed in neocortical GABAergic and glutamatergic neurons.
نویسندگان
چکیده
The cannabinoid receptor CB1 is found in abundance in brain neurons, whereas CB2 is essentially expressed outside the brain. In the neocortex, CB1 is observed predominantly on large cholecystokinin (CCK)-expressing interneurons. However, physiological evidence suggests that functional CB1 are present on other neocortical neuronal types. We investigated the expression of CB1 and CB2 in identified neurons of rat neocortical slices using single-cell RT-PCR. We found that 63% of somatostatin (SST)-expressing and 69% of vasoactive intestinal polypeptide (VIP)-expressing interneurons co-expressed CB1. As much as 49% of pyramidal neurons expressed CB1. In contrast, CB2 was observed in a small proportion of neocortical neurons. We performed whole cell recordings of pyramidal neurons to corroborate our molecular findings. Inhibitory postsynaptic currents (IPSCs) induced by a mixed muscarinic/nicotinic cholinergic agonist showed depolarization-induced suppression of inhibition and were decreased by the CB1 agonist WIN-55212-2 (WIN-2), suggesting that interneurons excited by cholinergic agonists (mainly SST and VIP neurons) possess CB1. IPSCs elicited by a nicotinic receptor agonist were also reduced in the presence of WIN-2, suggesting that neurons excited by nicotinic agonists (mainly VIP neurons) indeed possess CB1. WIN-2 largely decreased excitatory postsynaptic currents evoked by intracortical electrical stimulation, pointing at the presence of CB1 on glutamatergic pyramidal neurons. All WIN-2 effects were strongly reduced by the CB1 antagonist AM 251. We conclude that CB1 is expressed in various neocortical neuronal populations, including glutamatergic neurons. Our combined molecular and physiological data suggest that CB1 widely mediates endocannabinoid effects on glutamatergic and GABAergic transmission to modulate cortical networks.
منابع مشابه
Functional CB1 receptors are broadly expressed in neocortical GABAergic and glutamatergic neurons Abbreviated title: CB1 in GABAergic and glutamatergic neurons
Elisa L. Hill, Thierry Gallopin, Isabelle Férézou, Bruno Cauli, Jean Rossier, Paul Schweitzer, Bertrand Lambolez 1 Laboratoire de Neurobiologie et Diversité Cellulaire, CNRS UMR 7637, Ecole Supérieure de Physique et de Chimie Industrielles, 10 rue Vauquelin, 75005 Paris, France. 2 Molecular and Integrative Neurosciences Department, CVN 12, The Scripps Research Institute, 10550 North Torrey Pine...
متن کاملA restricted population of CB1 cannabinoid receptors with neuroprotective activity.
The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. Of note, CB1 receptors are expressed at the synapses of two opposing (i.e., GABAergic/inhibitory and glutamatergic/excitatory) neuronal populations, so the activation of one and/or another receptor population may conc...
متن کاملThe Endocannabinoid System Controls Key Epileptogenic Circuits in the Hippocampus
Balanced control of neuronal activity is central in maintaining function and viability of neuronal circuits. The endocannabinoid system tightly controls neuronal excitability. Here, we show that endocannabinoids directly target hippocampal glutamatergic neurons to provide protection against acute epileptiform seizures in mice. Functional CB1 cannabinoid receptors are present on glutamatergic te...
متن کاملNovel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus.
Psychoactive effects of cannabinoids are thought to be mediated, at least in part, by suppression of both glutamate and GABA release via CB1 cannabinoid receptor. Two types of cannabinoid receptor (CB1 and CB2) have been cloned so far. The CB1 receptors are abundantly expressed in the nervous system, whereas CB2 receptors are limited to lymphoid organs (Matsuda et al., 1990; Munro et al., 1993)...
متن کاملGenetic Dissection of Behavioural and Autonomic Effects of D-Tetrahydrocannabinol in Mice
Marijuana and its main psychotropic ingredient D-tetrahydrocannabinol (THC) exert a plethora of psychoactive effects through the activation of the neuronal cannabinoid receptor type 1 (CB1), which is expressed by different neuronal subpopulations in the central nervous system. The exact neuroanatomical substrates underlying each effect of THC are, however, not known. We tested locomotor, hypoth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 97 4 شماره
صفحات -
تاریخ انتشار 2007